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Abstract

Diffraction effects are important in acoustic imaging and tissue characterization
because of the relatively large wavelengths used and the fact that applications are fre-
quently used in the near-field of the source. It is difficult to intuitively anticipate the
shape of the field there, yet the description of the field's spatial acoustic potential or
pressure distribution is necessary. This problem is more complicated when focused transdu-
cers or phased arrays are used. Using the spatial frequency, domain it is possible to model
propagation in lossless and lossy media as a transfer function. The sources are represented
as planar sources with separable arbitrary time excitation and arbitrary spatial excitation.
Transfer functions can be obtained for lossless media, media with a linear frequency depen-
dence of attenuation coefficient, and media with a quadratic dependence of attenuation co-
efficient. The transfer functions are shown to be simply related to the two-dimensional
spatial transform of the Green's function of the wave equation for propagation in the medium
of interest with the assumed boundary conditions. The transfer functions of the lossy and
lossless propagation models are shown to be interdependent. For any given observation plane,
these transfer functions are time-varying spatial filters that attenuate higher spatial fre-
quencies with increasing effectiveness as time proceeds. The effects of source .excitation
and apodization, source boundary conditions, assumed media properties, and receiver aperture
effects are easily incorporated in this model. Several numerical simulations of computed
acoustic potentials and pressure distributions are shown.

Introduction

The design of pulsed focussed transducers, transducer arrays, and apodized transducers
requires an efficient mathematical technique to rapidly compute the acoustic fields (either
acoustic potential or acoustic pressure) to evaluate the effects of the design on peak pres-
sure levels, focusing resolution, and other parameters of interest to the designer. Given a
source of arbitrary shape, and temporal and spatial excitation, we seek a method to cgmpute
the time-varying fields in front of the transducer. Current mathematical techniques1' in-
volve evaluation of complicated line integrals, and require different integrals depending on
the observation point location. Additionally, most techniques are limited to application in
lossless media, while computation of the fields is frequently required in lossy media such
as absorbent liquids or human tissue. This paper presents an efficient computer-based tech-
nique that allows computation of the acoustic potential or pressure in an observation plane
in various media, both lossless and lossy. This technique should be of interest to those
doing computer-aided ultrasonic transducer design for medical and other applications.

The problem is shown in Fig. 1. Given a planar source with arbitrary (but separable)
temporal and spatial excitation, we seek to calculate the acoustic potential @(x,y,z,t) at a
plane locafed a distance z from the source. (A weakly-focussed transducer or array can also
be modeled”’ as a planar source that allows use of this method.) We will assume that the
normal velocity, vz(x,y,O,t), is of the separable form

v,(z,y,0,t) = T(t)s(z, y) (1)

where s(x,y) is the arbitrary spatial excitation and T(t) is an arbitrary temporal excita-
tion.

Iheory

Since propagation in linear homogeneous media is a linear time-invariant process, we
are able to use linear systems concepts to solve the problem under consideration., In this
section we define some terms and review results predicted by linear systems concepts.

SPIE Vol. 768 International Symposium on Pattern Recognition and Acoustical Imaging (1987} / 253



As shown in Figure 2, the impulse response g(x,y,z,t) is the potential that results
from a source of the form 5(x-x s ¥=¥g3:0,0)9(t) located at a position (xg,¥g ) in the source
plane. The form of g(x,y,z,t) w?ll depend on the wave equation of the medium and on the
boundary conditions of the source plane. The function g(x,y,z,t) is commonly called the
"Green's function” when it is found from the wave quation and boundary conditions. Since
the other simple boundary conditions have been shown’ to be easily expressed in terms of a
rigid baffle at the source, we will assume a rigid baffle for the boundary conditions of the
source of the paper.

N
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Figure 1 Geometry of propagation problem Figure 2 Block diagram of impulse response

As shown in Fig. 3, the spatial impulse response of the medium is defined1'2 as the
response to a source of18h?1form s(x,y)8(t). For lossless and linear media, the spatial im-
pulse response is given

h(z,v,2,t) = 8(z,¥) 5 5 9{z, ¥, 2,1) (2)

where g(x,y,z,t) is the Green's function ?5 the wave equation. For the quadratic medium, the
corresponding relationship has been shown to be,

h(z,y,z,t):a(z,y);; [g(z,y,z,t)-&-ﬂ%%} . (3)

where P is a loss term defined later in this paper,

sboyIT(t) Propagation
six )3t erepegaton T bordery condtiens [
________*ET + >
boundary conditions et = ¢quzﬂ
SHyyoby2Y = Tl ¥ hixy.zt
= shxyiTit) ¢ glxyzi)
Figure 3 Block diagram of spatial Figure 4 Block diagram of general solution

impulse response
The double spatial convolutions indicated are simpler multiplication in the Fourier
domain. Denoting the two-dimensional spatial transform by a tilde, Eq. 3 becomes

£=s[§ ﬁa;]aﬁ'ﬁ )
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where the last term of Eq. 4 has been neglected since B.=1O'10 for most liquids and gases.
This last approximation produces the same result as spatially transforming Eq. 2.

As shown in Fig. 4, the acoustic potential ¢(x,y,z,t) can be found from the spatial
impulse response or from the Green's function. The equation is

$(z,y,2,t) = T(t){ blz,y,2,t) = T(t)a(z,9) 2 4 9(2,¥, %) (5)

In our work we have done the temporal convolution directly, while performing the spa-
tial convolutions as multiplications in the spatial frequency domain. The equation for this
is

$(z,y,2,t) = T(t); 77 {55} (6)

This last equation expresses the method used out technique. Given the input velocity,
v, = s(x,y)T(t), we

1) find the two~dimensional transform E(fx,f ) of the spatial portion s(x,y),

2) multiply S(f,,fy,) by the appropriate tFanifer function E(g,z,t) for the propagation
under considera%ion with the boundary conditions specified,

3) perform the inverse two-dimensional spatial transform to find the spatial impulse res-
ponse h{x,y,z,t),

4) perform a temporal convolution of h(x,y,z,t) with the temporal portion of the input
excitation T(t) to find the desired acoustic potential ¢(x,y,z,t), and

5) compute the pressure p(x,y,z,t), if desired, from the acoustic potential with the rela-
tion.

The remainder of this paper presents some models for the propagation and results based
on those models.

Wave equations apnd Greepn's functiops

Three wave equations given in Eqs. 7-9 can be used to model propagation in lossless
media, in media with a loss coefficient that is linear in frequency over the frequency range
from 1 to 10 MHz (called "linear-loss" media, hereafter), and in media with a loss coeffici-
ent that varies quadratically with frequency over a portion of its frequency range (called
"quadratic~loss” media, hereafter).

]
Vi - _:7%‘% =0 (lossless media) (1)
3
v3¢_.c_1;%§_,4%%+3¢=0 (linear loss) (8)
1 3% avig .
vig - 355 —ﬂ—at—-=0 {quadratic loss) (9)

The first equation is the standard wave equation. The second equation is the "Irvine" model
presented in Ref. 13. (No?s that if B = 0, then the equation is the "telegrapher's equation"
that was proposed earlier for this medium.) This equation has a plane-wave attenuation
coefficient that is linearly dependent on frequency over a portion of its frequency res-
ponse. The third equation is the Stoke's equation and is presented in standard acoustics
texts as representing propagation in media with a quadratic frequency dependence of the
plane-wave attenuation coefficient. (Note in Eqs. 8 and 9 that if the loss terms A, B, and
approach zero that the wave equations will revert to the lossless case. This behavior was
used as one of the tests to check the validity of the solutions obtained.)

The Green's functions for these equations are known‘3'12 and written in Egs. 10-12.
‘ 5(ct - R)

o R (lossless media) (10)

gz, y,2,t) =
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5(ct-R) VBF (AN 1 [VBF (A7 - )

— —Ac’t .
g2z, y,2,t) = ¢ {: orR P or 7 (linear loss)

(SR

2exp [—- (ct - \/;Wc-’ﬁ)z /Zc’ﬁt]
e/Bty/r? + 22

g3(z,y,2,t) = {for fw?t < 100) (quadratic loss) (12)

The transfer functions for propagation in the media of interest for a rigid baffle are
written in Egs. 13-15.

o1 =Jo (pv ¢33 — z’) Het — z) (lossless media) (13)

Goz=1Io [\/p2 — B ~ (A3c3/4)V 33 — z’/2] exp (—Ac*t/2) H(ct —z)  (linear loss) (1)

Gps ~ exp(—2x%c?fp%t) [ﬂ%ﬂ%ﬂﬂ :Jo (ZNVc’t’ - z’) H{ct - z)]

VBt (15)
(for Bw?t < 100) (quadratic loss) .
Numerical simulations

The following simulations have been done using a 6U4x64 array of data for 50 points in
time. While the method gives a three-dimensional solution at any given observation distance,
one dimension is eliminated in the plots by representing the solution through a median of
the source, as is conventionally done in the literature. The plots show the amplitude of the
wave plotted against cross-direction and time. For plotting convenience, the plots have been
normalized to the maximum amplitude value obtained for lossless propagation. The width is
normalized to the characteristic source size D (i.e., either the diameter or the width), and
the time axis is normalized by the value of D/c. The origin of the time axis begins at z/e¢,
the instant that the first part of the wave arrives at the observation plane. All plots are
in an observation plane located 10 cm in front of the source plane.

Figures 5-7 show the calculated impulse response from a square piston source (i.e.,
s(x,y) is a uniform square). The values of the loss coefficient in the lossy media are given
in the captions. The lossy media are seen to attenuate the waves and to cause a filling in
of the region between the "tails" of the wave as time proceeds. Also the lower spatial fre-
quencies are seen to increasingly dominate as time increases.
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Figure 5, Square transducer, impulse Figure 6. Square transducer, impulse
excitation, z=10 cm, lossless diffraction, excita&ign, z=10 cm, lossy medium
D=2.2 cm (B+(A“c</4)=1.,266), D=2.2 cm

To illustrate a spatially nonuniform excitation, we consider a circular region (diameter
is D) with a Gaussian spatial excitation. The 1/e widths are indicated in the captions. The
calculated impulse responses are shown in Figs. 8-10. The shape of the Gaussian wave stays
much the same in both the low-loss and high-loss cases because of the lower spatial fre-
quency content of this waveshape.
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Figure 7. Square transducer, impulse

Figure 8. Circular source, Gaussian
excitation, z=§0 cm, lossy medium spatial excitation, z=10 cm, lossless
(@= 107 38), D=3.1 cm medium, 1/e point=0.491 cm, D=2.2 cm
)

a8 0
oM

z
%2
2]

e ity POMNTIRL

s w2

Figure 9. Circular source, Gaussian

Figure 10. Circular source, Gaussian
spatial excitatéo , 2=10 cm, lossy spatial excitation, z=1Q cm, lossy
medium (B+(Ac</4)=1.266) medium (¢ = 107 3),
1/e point=0.491 cm, D=2.2 cm 1/e point =

1.18 cm, D=3.1 cm

For a time excitation different than #(t), the diffracted wave a convolution between
-he impulse response and the time derivative of the temporal excitation portion of the
source acoustic potential given by Eq. 1. The pressure of the wave is proportional to the
-ime derivative of the acoustic velocity potential. Figure 11 shows the pressure pattern
‘rom a uniformly excited square velocig

‘he period of the square wave is 8x107

y with a one-cycle square wave temporal excitation.
D/c.
ible along the time axis.

The effects of the time derivative are notice~

Supmary

This paper presents a computationally efficient method of computing the transient
ycoustic waves in lossless and lossy media. The fields are expressed in terms of the spatial
mpulse response which is found by inverse transforming the product of the transform of the
3patial excitation and the appropriate propagation transfer function for the medium. No
zeometrical interpretations are required as the method uses only the spatial Fourier
-ransform (or Hankel transform) in its computations.
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Figure 11. Transient pressure response from square transducer
with a single-cycle square wave excitation with ?Operiod
of 8x107°D/c seconds (z=10 cm, D=3.1 cm, p=10~ s)
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